Left Quotients of C*-algebras, Ii: Atomic Parts of Left Quotients

نویسنده

  • NGAI-CHING WONG
چکیده

Let A be a C*-algebra. Let z be the maximal atomic projection in A∗∗. By a theorem of Brown, x in A∗∗ has a continuous atomic part, i.e. zx = za for some a in A, whenever x is uniformly continuous on the set of pure states of A. Let L be a closed left ideal of A. Under some additional conditions, we shall show that for any x in A∗∗, x has a continuous atomic part modulo L∗∗, i.e. zx + L∗∗ = za + L∗∗ for some a in A whenever x∗x and u∗x, ∀u ∈ A, are uniformly continuous on the set of pure states of A vanishing on L.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Left I-quotients of band of right cancellative monoids

Let $Q$ be an inverse semigroup. A subsemigroup $S$ of $Q$ is a left I-order in $Q$ and $Q$ is a semigroup of left I-quotients of $S$ if every element $qin Q$ can be written as $q=a^{-1}b$ for some $a,bin S$. If we insist on $a$ and $b$ being $er$-related in $Q$, then we say that $S$ is straight in $Q$. We characterize semigroups which are left I-quotients of left regular bands of right cancell...

متن کامل

RESIDUAL OF IDEALS OF AN L-RING

The concept of right (left) quotient (or residual) of an ideal η by anideal ν of an L-subring μ of a ring R is introduced. The right (left) quotients areshown to be ideals of μ . It is proved that the right quotient [η :r ν ] of an idealη by an ideal ν of an L-subring μ is the largest ideal of μ such that[η :r ν ]ν ⊆ η . Most of the results pertaining to the notion of quotients(or residual) of ...

متن کامل

Nuclearity of Semigroup C*-algebras and the Connection to Amenability

We study C*-algebras associated with subsemigroups of groups. For a large class of such semigroups including positive cones in quasi-lattice ordered groups and left Ore semigroups, we describe the corresponding semigroup C*algebras as C*-algebras of inverse semigroups, groupoid C*-algebras and full corners in associated group crossed products. These descriptions allow us to characterize nuclear...

متن کامل

Left Annihilator of Identities Involving Generalized Derivations in Prime Rings

Let $R$ be a prime ring with its Utumi ring of quotients $U$,  $C=Z(U)$ the extended centroid of $R$, $L$ a non-central Lie ideal of $R$ and $0neq a in R$. If $R$ admits a generalized derivation $F$ such that $a(F(u^2)pm F(u)^{2})=0$ for all $u in L$, then one of the following holds: begin{enumerate} item there exists $b in U$ such that $F(x)=bx$ for all $x in R$, with $ab=0$; item $F(x)=...

متن کامل

IDEAL J *-ALGEBRAS

A C *-algebra A is called an ideal C * -algebra (or equally a dual algebra) if it is an ideal in its bidual A**. M.C.F. Berglund proved that subalgebras and quotients of ideal C*-algebras are also ideal C*-algebras, that a commutative C *-algebra A is an ideal C *-algebra if and only if it is isomorphicto C (Q) for some discrete space ?. We investigate ideal J*-algebras and show that the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004